Journal of Organometallic Chemistry, 277 (1984) C31-C34 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

PHOSPHINSUBSTITUIERTE CHELATLIGANDEN

XIII*. PHOTOCHEMISCHE SUBSTITUTION VON METALLHEXA-CARBONYLEN MIT PHOSPHINOTHIOFORMAMID-LIGANDEN

U. KUNZE* und H. JAWAD

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen (Deutschland)

(Eingegangen den 18. September 1984)

Summary

Neutral complexes with mono- and di-coordinated phosphinothioformamide ligands are obtained by photochemical substitution of the metal hexacarbonyls $M(CO)_6$ (M = Cr, Mo, W) in tetrahydrofuran or cyclohexane solution. The photosubstitution requires specific conditions due to the pronounced thermal and photolytic lability of the new compounds.

Phosphinothioformamide haben sich als vielseitige, ambidente Komplexliganden erwiesen [2]. Die Schwerpunkte der Untersuchungen lagen bisher in der VI. [3,4], VII. [5,6] und VIII. Nebengruppe [7,8]. Als Ausgangsverbindungen fanden ausschliesslich Metallhalogenide Verwendung (vgl. Lit. 9). Wir berichten erstmals über die Darstellung neutraler Phosphinothioformamid-Komplexe durch photochemische Substitution von Metallhexacarbonylen. Von besonderem Interesse sind Komplexe mit sekundären und N-silylierten Thioamid-Liganden, die noch über ein reaktives Zentrum verfügen. Dadurch sollten prinzipiell Folgereaktionen wie oxidativer Abbau und Aufbau von Mehrkern-Komplexen möglich sein.

Die ein- und zweizähnig koordinierten Phosphinothioformamid-Komplexe des Chroms, Molybdäns und Wolframs erweisen sich in der Regel als thermisch und photolytisch labil, so dass die üblichen Methoden zur CO-Substitution von Metallhexacarbonylen I [10] nur bedingt anwendbar sind. Der Syntheseweg muss daher je nach Löslichkeit der gesuchten Verbindung von der Tieftemperatur-Photolyse in Tetrahydrofuran (Methode A) oder der Bestrahlung bei Raumtemperatur in Cyclohexan-Lösung (Methode B) ausgehen.

*XII. Mitteilung siehe Lit. 1.

TABELLE 1

AUS	BEUTE	N, IR- UND A	NALY	SENDATEN DER CHROM-, MOLYBDÄN-	UND WOL	FRAM-F	KOMPLE	XE IIIa,	IVa-IVd, Vb
Verb.	indung	Methode	Zeit	IR, ν (CO) (cm ⁻¹) (fest, KBr;	Analysen	(Gef. (b	er.)(%))	!	Molmasse ^a
		(Ausb. (%))	(H	in Klammern; Lösungsmittelspektrum)	0	Н	z	s	(Gef. (ber.))
IIIa	ç	A (80)	œ	2056m, 1980m, 1953m, 1933vs, 1908vs (2064m, 1999m, 1950ch, 1949vs (CCI, 1)	(56.14)	(414)	(9 73)	(16 94)	(613 43)
	Мо	(09) V	œ	2072m, 1992m, 1962vs, 1937vs, 1918s	50.86	4.15	2.22	4.70	
	А	A (72)	10	(2074w, 1997w, 1953sh, 1945vs (CCl ₄)) 2072m 1991w 1944sh 1924s h	(51.72)	(2.89)	(2.51)	(5.75)	(557.37)
	:		2	201 201 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0	(44.67)	(2.50)	(2.17)	(4.97)	(645.32)
IVa	స	A (85)	9	2012s, 1913vs, 1889vs, 1854 vs	59.22	4.81	2.62	5.25	485
				(2001m, 1904sh, 1895vs, 1862s (THF))	(56.91)	(3.32)	(2.88)	(09.9)	(485.42)
	Мо	A (78)	9	2021s, 1904vs, 1892vs, 1845vs	56.17	4.50	2.42	4.37	529
	M	A (92)	%	(2013m, 1905vs, 1863s, (THF)) 2024s, 1921vs, 1907vs, 1974vs	(52.17) 44.75	(3.00) 3.90	(2.64) 2.05	(6.06) 5.06	(529.36) 617
				(2008m, 1940s, 1893vs, 1861s (THF))	(44.67)	(2.61)	(2.27)	(5.19)	(617.31)
٩VI	ç	A (80)	2	2003s, 1910vs, 1866vs, 1847vs	53.95	4.74	3.10	7.00	423
				(2013m, 1925sh, 1900vs, 1862s (THF))	(51.07)	(3.33)	(3.31)	(7.57)	(423.35)
	Мо	A (64)	7	2013s, 1898vs, 1892sh, 1849s	45.74	3.48	2.80	6.17	467
				(2015s, 1900vs, 1898sh, 1851s (THF))	(46.26)	(3.02)	(3.00)	(6.86)	(467.29)
	M	A (75)	~	2020m, 1900vs, 1875vs, 1830s, 1820s	38.83	2.55	2.36	5.64	555
				(2014s, 1903sh, 1896vs, 1851s (THF))	(38.94)	(2.54)	(2.52)	(6.77)	(555.25)
IVc	ũ	A (95)	80	2002s, 1905s, 1874vs, 1842s	52.24	3.78	3.15	7.37	437
				(2005m, 1907s, 1893vs, 1862s (THF))	(52.17)	(3.69)	(3.20)	(1.33)	(437.37)
	MoA	A (90)	æ	2013s, 1907vs, 1881vs, 1844vs	48.60	3.71	2.94	5.27	481
			I	(2016m, 1912vs, 1902sh, 1859s (THF))	(47.41)	(3.35)	(2.91)	(99.9)	(481.32)
	3	(77) V	×	2008s, 1903vs, 1869vs, 1837vs (2010m 1900sh 1200vs 1252s (THFN)	41.20	3.21	2.41	5.27	571 (569 97)
117.4	ł	100) B	ç						
	5	(00) 0	2	2000%, 1312%, 100/%, 100/%, 100%	00'70	4.40	07.7	10.0	001 / F F T F O/
	Мо	B (50)	10	(20075, 190751, 1896VS, 16645 (1477)) 2020s. 1907vs. 1893vs. 1842s	(20.02) 51.77	(4.34) 4.07	(2.32) 2.20	(0, (0) 5.51	(20.100)
				(2020s, 1949s, 1914vs, 1862m (CH,Cl ₃))	(51.93)	(4.02)	(2.33)	(5.33)	(601.46)
	M	B (65)	9 0	2015s, 1895vs, 1884vs, 1841s	44.92	3.14	1.84	4.85	
				(2015s, 1934sh, 1908vs, 1857m (CHCl ₃))	(44.26)	(3.48)	(2.03)	(4.66)	(689.37)
۲p	Мо	B (~10)	80	2023m, 1933vs, 1910vs, 1872vs					
	M	B (~5)	80	2024m, 1934s, 1912vs, 1873vs					

^a Massenspektroskopisch (FD-Methode, 8 kV; ber. für ⁵²Cr, ⁹⁶Mo, ¹⁸⁴W).

Durch Umsetzung der THF-Addukte II in einer Dunkelreaktion bei 0°C erhält man in guter Ausbeute die gelben, *P*-koordinierten Pentacarbonylkomplexe IIIa, die sich unter Lichteinwirkung leicht zu den Chelatkomplexen IVa zersetzen. Der Übergang lässt sich IR-spektroskopisch an der kurzwelligen Verschiebung der Thioamid-B-Bande des Liganden verfolgen [6].

Die gezielte Darstellung der dunkelroten bzw. rotvioletten, P,S-koordinierten Chelatkomplexe IVa—IVc erfolgt durch Tieftemperatur-Photoreaktion der THF-Addukte II mit den entsprechenden Liganden. IVa—IVc sind in festem Zustand luftstabil; in Lösung tritt bei Raumtemperatur rasche Zersetzung ein. Bei der Einwirkung von Triphenylphosphin und -stibin auf IVb (THF, -30°C) findet eine reversible Spaltung der Metall—Schwefel-Bindung ohne CO-Substitution statt.

Die rotbraunen N-Silylthioformamid-Komplexe IVd lassen sich photochemisch in Cyclohexan-Lösung (30–40°C) oder durch Ligandenaustausch der *cis*-LM(CO)₄-Vorstufen (L = Norbornadien, 2 Acetonitril) [10] darstellen. Analoge Pentacarbonylkomplexe sind zwar zugänglich, aber recht instabil.

Durch photochemische Umsetzung der Liganden mit Metallhexacarbonylen im Molverhältnis 2/1 (Cyclohexan-Lösung) erhält man in geringer Ausbeute die gelben, einzähnig koordinierten Tetracarbonyl-Komplexe Vb (M = Mo, W). Wegen der hohen Tendenz zur Chelatbildung zersetzen sich die Lösungen von Vb (DMSO, THF) nach kurzer Zeit, lassen sich aber spektroskopisch hinreichend charakterisieren.

Analysenwerte und $\nu(CO)$ -Frequenzen der neuen Verbindungen sind in Tabelle 1 zusammengestellt; weitere spektroskopische Daten werden in einer späteren Arbeit mitgeteilt. Die Komplexe mit sekundären Thioamid-Liganden (IIIa, IVa,IVb) neigen hartnäckig zum Einschluss von THF, und die gefundenen C,H-Werte weichen teilweise von den berechneten ab.

Experimenteller Teil

Für sämtliche Umsetzungen verwendeten wir getrocknete, frisch über Natriumhydrid destillierte, argongesättigte Lösungsmittel. Die Liganden wurden nach Literaturverfahren [6,11,12] hergestellt.

Methode A. Zur Darstellung der Pentacarbonylkomplexe IIIa werden die THF-Addukte II der Metallhexacarbonyle $M(CO)_6$ (M = Cr, Mo, W; 10 mmol in 120 ml THF) [10] bei 0°C unter Lichtausschluss mit dem Liganden umgesetzt, die Lösungen eingeengt und die Produkte mit n-Hexan ausgefällt. Die Chelatkomplexe IVa—IVc erhält man aus II nach Zugabe des betreffenden Liganden und 3 h Bestrahlen (Hg-Hochdrucklampe Hanau TQ 150) bei -50°C. Nach Beendigung der CO-Entwicklung wird die dunkelrote Lösung eingeengt, mit n-Hexan überschichtet und IVa—IVc bei -20°C auskristallisiert. Reaktionszeiten und Ausbeuten siehe Tab. 1.

Methode B. Die Darstellung der N-Silylthioformamid- und Bis(thioformamid)-Komplexe IVd und Vb erfolgt durch direkte Photosubstitution. 3-5 mmol Metallhexacarbonyl werden mit der äquivalenten Menge Ligand in ca. 65 ml Cyclohexan vorgelegt und das Gemisch 4 h unter Durchleiten eines Argonstroms bei 40°C mit der UV-Lampe bestrahlt. Das ausgefallene Rohprodukt wird abgesaugt, zweimal mit n-Hexan gewaschen und im Vakuum getrocknet.

Dank. Wir danken der Deutschen Forschungsgemeinschaft für die Förderung dieser Arbeit.

Literatur

- 1 U. Kunze und A. Bruns, Z. Naturforsch., im Druck.
- A. Antoniadis, U. Kunze und M. Moll, J. Organomet. Chem., 235 (1982) 177 und dort zitierte Literatur.
 H.P.M.M. Ambrosius, A.H.I.M. van der Linden und J.J. Steggerda, J. Organomet. Chem., 204 (1980) 211.
- 4 H.P.M.M. Ambrosius, W.P. Bosman und J.A. Cras, J. Organomet. Chem., 215 (1981) 201.
- 5 K.G. Steinhäuser, W. Klein und R. Kramolowsky, J. Organomet. Chem., 209 (1981) 355.
- 6 U. Kunze, A. Antoniadis und M. Moll, J. Organomet. Chem., 215 (1981) 187.
- 7 D.H.M.W. Thewissen und H.L.M. van Gaal, J. Organomet. Chem., 172 (1979) 69; D.H.M.W. Thewissen, ibid., 188 (1980) 211.
- 8 D.H.M.W. Thewissen, H.P.M.M. Ambrosius, H.L.M. van Gaal und J.J. Steggerda, J. Organomet. Chem., 192 (1980) 101; D.H.M.W. Thewissen, ibid., 192 (1980) 115.
- 9 H.P.M.M. Ambrosius, Dissertation, Univ. Nijmegen, 1981.
- 10 Handbuch der Präparativen Anorganischen Chemie (Herausg. G. Brauer), Band III, 3. Aufl., Ferd. Enke Verlag, Stuttgart, 1981.
- 11 A. Antoniadis, A. Bruns und U. Kunze, Phosphorus Sulfur, 15 (1983) 317.
- 12 U. Kunze und A. Antoniadis, Z. Anorg. Allg. Chem., 456 (1979) 155.